
YOLOv3: An Incremental Improvement

Joseph Redmon, Ali Farhadi
University of Washington

Abstract

We present some updates to YOLO! We made a bunch
of little design changes to make it better. We also trained
this new network that’s pretty swell. It’s a little bigger than
last time but more accurate. It’s still fast though, don’t
worry. At 320 × 320 YOLOv3 runs in 22 ms at 28.2 mAP,
as accurate as SSD but three times faster. When we look
at the old .5 IOU mAP detection metric YOLOv3 is quite
good. It achieves 57.9 AP50 in 51 ms on a Titan X, com-
pared to 57.5 AP50 in 198 ms by RetinaNet, similar perfor-
mance but 3.8× faster. As always, all the code is online at
https://pjreddie.com/yolo/.

1. Introduction

Sometimes you just kinda phone it in for a year, you
know? I didn’t do a whole lot of research this year. Spent
a lot of time on Twitter. Played around with GANs a little.
I had a little momentum left over from last year [12] [1]; I
managed to make some improvements to YOLO. But, hon-
estly, nothing like super interesting, just a bunch of small
changes that make it better. I also helped out with other
people’s research a little.

Actually, that’s what brings us here today. We have
a camera-ready deadline [4] and we need to cite some of
the random updates I made to YOLO but we don’t have a
source. So get ready for a TECH REPORT!

The great thing about tech reports is that they don’t need
intros, y’all know why we’re here. So the end of this intro-
duction will signpost for the rest of the paper. First we’ll tell
you what the deal is with YOLOv3. Then we’ll tell you how
we do. We’ll also tell you about some things we tried that
didn’t work. Finally we’ll contemplate what this all means.

2. The Deal

So here’s the deal with YOLOv3: We mostly took good
ideas from other people. We also trained a new classifier
network that’s better than the other ones. We’ll just take
you through the whole system from scratch so you can un-
derstand it all.

50 100 150 200 250
inference time (ms)

28

30

32

34

36

38

C
O

C
O

 A
P

B C

D
E

F

G
RetinaNet-50
RetinaNet-101

YOLOv3

Method
[B] SSD321
[C] DSSD321
[D] R-FCN
[E] SSD513
[F] DSSD513
[G] FPN FRCN
RetinaNet-50-500
RetinaNet-101-500
RetinaNet-101-800
YOLOv3-320
YOLOv3-416
YOLOv3-608

mAP
28.0
28.0
29.9
31.2
33.2
36.2
32.5
34.4
37.8
28.2
31.0
33.0

time
61
85
85

125
156
172
73
90

198
22
29
51

Figure 1. We adapt this figure from the Focal Loss paper [9].
YOLOv3 runs significantly faster than other detection methods
with comparable performance. Times from either an M40 or Titan
X, they are basically the same GPU.

2.1. Bounding Box Prediction

Following YOLO9000 our system predicts bounding
boxes using dimension clusters as anchor boxes [15]. The
network predicts 4 coordinates for each bounding box, tx,
ty , tw, th. If the cell is offset from the top left corner of the
image by (cx, cy) and the bounding box prior has width and
height pw, ph, then the predictions correspond to:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw

bh = phe
th

During training we use sum of squared error loss. If the
ground truth for some coordinate prediction is t̂* our gra-
dient is the ground truth value (computed from the ground
truth box) minus our prediction: t̂* − t*. This ground truth
value can be easily computed by inverting the equations
above.

YOLOv3 predicts an objectness score for each bounding
box using logistic regression. This should be 1 if the bound-
ing box prior overlaps a ground truth object by more than
any other bounding box prior. If the bounding box prior

1

https://pjreddie.com/yolo/

σ(tx)

σ(ty)

pw

ph bh

bw

bw=pwe
bh=phe

cx

cy

bx=σ(tx)+cx
by=σ(ty)+cy

tw

th

Figure 2. Bounding boxes with dimension priors and location
prediction. We predict the width and height of the box as offsets
from cluster centroids. We predict the center coordinates of the
box relative to the location of filter application using a sigmoid
function. This figure blatantly self-plagiarized from [15].

is not the best but does overlap a ground truth object by
more than some threshold we ignore the prediction, follow-
ing [17]. We use the threshold of .5. Unlike [17] our system
only assigns one bounding box prior for each ground truth
object. If a bounding box prior is not assigned to a ground
truth object it incurs no loss for coordinate or class predic-
tions, only objectness.

2.2. Class Prediction

Each box predicts the classes the bounding box may con-
tain using multilabel classification. We do not use a softmax
as we have found it is unnecessary for good performance,
instead we simply use independent logistic classifiers. Dur-
ing training we use binary cross-entropy loss for the class
predictions.

This formulation helps when we move to more complex
domains like the Open Images Dataset [7]. In this dataset
there are many overlapping labels (i.e. Woman and Person).
Using a softmax imposes the assumption that each box has
exactly one class which is often not the case. A multilabel
approach better models the data.

2.3. Predictions Across Scales

YOLOv3 predicts boxes at 3 different scales. Our sys-
tem extracts features from those scales using a similar con-
cept to feature pyramid networks [8]. From our base fea-
ture extractor we add several convolutional layers. The last
of these predicts a 3-d tensor encoding bounding box, ob-
jectness, and class predictions. In our experiments with
COCO [10] we predict 3 boxes at each scale so the tensor is
N ×N × [3 ∗ (4 + 1+ 80)] for the 4 bounding box offsets,
1 objectness prediction, and 80 class predictions.

Next we take the feature map from 2 layers previous and
upsample it by 2×. We also take a feature map from earlier
in the network and merge it with our upsampled features
using concatenation. This method allows us to get more
meaningful semantic information from the upsampled fea-
tures and finer-grained information from the earlier feature
map. We then add a few more convolutional layers to pro-
cess this combined feature map, and eventually predict a
similar tensor, although now twice the size.

We perform the same design one more time to predict
boxes for the final scale. Thus our predictions for the 3rd
scale benefit from all the prior computation as well as fine-
grained features from early on in the network.

We still use k-means clustering to determine our bound-
ing box priors. We just sort of chose 9 clusters and 3
scales arbitrarily and then divide up the clusters evenly
across scales. On the COCO dataset the 9 clusters were:
(10×13), (16×30), (33×23), (30×61), (62×45), (59×
119), (116× 90), (156× 198), (373× 326).

2.4. Feature Extractor

We use a new network for performing feature extraction.
Our new network is a hybrid approach between the network
used in YOLOv2, Darknet-19, and that newfangled residual
network stuff. Our network uses successive 3× 3 and 1× 1
convolutional layers but now has some shortcut connections
as well and is significantly larger. It has 53 convolutional
layers so we call it.... wait for it..... Darknet-53!

Type
Convolutional
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Avgpool
Connected
Softmax

Filters
32
64
32
64

128
64
128

256
128
256

512
256
512

1024
512
1024

Size
3 × 3
3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

Global
1000

Output
256 × 256
128 × 128

128 × 128
64 × 64

64 × 64
32 × 32

32 × 32
16 × 16

16 × 16
8 × 8

8 × 8

1×

2×

8×

8×

4×

Table 1. Darknet-53.

